On small values of indefinite diagonal quadratic forms at integer points in at least five variables

نویسندگان

چکیده

For any ? &gt; 0 \varepsilon &gt; 0 we derive effective estimates for the size of a non-zero integral point alttext="m element-of double-struck upper Z Superscript d minus StartSet 0 EndSet"> m ? Z d ?<!-- ? fence="false" stretchy="false">{ stretchy="false">} encoding="application/x-tex">m \in \mathbb {Z}^d \setminus \{0\} solving Diophantine inequality alttext="StartAbsoluteValue Q left-bracket m right-bracket EndAbsoluteValue epsilon"> stretchy="false">|<!-- | <mml:mi>Q stretchy="false">[ stretchy="false">] encoding="application/x-tex">\lvert Q[m] \rvert \varepsilon , where alttext="upper equals q 1 squared plus ellipsis Subscript Baseline 2"> = q 1 2 + …<!-- … encoding="application/x-tex">Q[m] = q_1 m_1^2 + \ldots q_d m_d^2 denotes non-singular indefinite diagonal quadratic form in alttext="d greater-than-or-equal-to 5"> ?<!-- ? <mml:mn>5 encoding="application/x-tex">d \geq 5 variables. In order to prove our quantitative variant Oppenheim conjecture, extend an approach developed by Birch and Davenport higher dimensions combined with theorem Schlickewei. The result obtained is optimal extension Schlickewei’s result, giving bounds on small zeros forms depending signature alttext="left-parenthesis r comma s right-parenthesis"> stretchy="false">( r , s stretchy="false">) encoding="application/x-tex">(r,s) up negligible growth factor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Values of Indefinite Quadratic Forms at Integral Points and Flows on Spaces of Lattices

This mostly expository paper centers on recently proved conjectures in two areas: A) A conjecture of A. Oppenheim on the values of real indefinite quadratic forms at integral points. B) Conjectures of Dani, Raghunathan, and Margulis on closures of orbits in spaces of lattices such as SLn(R)/SLn(Z) . At first sight, A) belongs to analytic number theory and B) belongs to ergodic and Lie theory, a...

متن کامل

Values of Binary Quadratic Forms at Integer Points and Schmidt Games

We prove that for any countable set A of real numbers, the set of binary indefinite quadratic forms Q such that the closure of Q ` Z2 ́ is disjoint from A has full Hausdorff dimension. Dedicated to S.G. Dani on the occasion of his 65th birthday

متن کامل

Values of isotropic quadratic forms at S-integral points

© Foundation Compositio Mathematica, 1992, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier ...

متن کامل

On common values of lacunary polynomials at integer points

For fixed ` ≥ 2, fixed positive integers m1 > m2 with gcd(m1,m2) = 1 and n1 > n2 > · · · > n` with gcd(n1, . . . , n`) = 1, and fixed rationals a1, a2, . . . , a`+1, b1, b2 which are all nonzero except for possibly a`+1, we show the finiteness of integral solutions x, y of the equation a1x n1 + · · ·+ a`x` + a`+1 = b1y + b2y , when n1 ≥ 3, m1 ≥ 2`(` − 1), and (n1, n2) 6= (m1,m2). In relation to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2022

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/btran/97